上級者
数学Ⅲ:複素数平面
-
ヒント:複素数部分の式変形は一度やったら覚えよう.積分の部分は,置き換る方法が重要なので,覚えておこう.
問題(オリジナル)
①\(z=r(\cos\theta+i\sin\theta)\)とする.このとき,\(z^{n}=r^{n}(\cos n\theta+i\sin n\theta)\)であることを示せ.ただし,\(n\)は自然数であるとする.
②\(\displaystyle 1+\cos\theta+\cdots+\cos n\theta=\frac{\cos\frac{n\theta}{2}\sin\frac{(n+1)\theta}{2}}{\sin\frac{\theta}{2}}\),\(\displaystyle \sin\theta+\cdots+\sin n\theta=\frac{\sin\frac{n\theta}{2}\sin\frac{(n+1)\theta}{2}}{\sin\frac{\theta}{2}}\)が成立することを示せ.
③\(\displaystyle \int_{0}^{\frac{\pi}{2}}\log(\sin x)dx\)の値を求めよ.
④\(\displaystyle \lim_{n\rightarrow\infty}\sum_{k=1}^{n}\int_{\frac{k\pi}{n^2}}^{\frac{2k\pi}{n^2}}\frac{1+\cos\theta+\cdots+\cos n\theta}{\sin\theta+\cdots+\sin n\theta}d\theta\)の値を求めよ.
解答
①
数学的帰納法で示す.
\(n=1\)のとき,自明.
\(n=k\)のとき,\(z^{k}=r^{k}(\cos k\theta+i\sin k\theta)\)であると仮定すると,
\(z^{k+1}=z\cdot z^{k}\)\(=r(\cos\theta+i\sin\theta)\cdot r^{k}(\cos k\theta+i\sin k\theta)\)\(=r^{k+1}\{(\cos\theta\cos k\theta-\sin\theta\sin k\theta)+i(\sin\theta\cos k\theta+\cos\theta\sin k\theta)\}\)\(=r^{k+1}(\cos(k+1)\theta+i\sin(k+1)\theta)\)となり,\(n=k+1\)でも成り立つ.
以上数学的帰納法より\(z^{n}=r^{n}(\cos n\theta+i\sin n\theta)\)が成り立つ.
②
まず\(1+z+\cdots+z^{n}=(1+\cos\theta+\cdots+\cos n\theta)+i(\sin\theta+\cdots+\sin n\theta)\)
一方,\(1+z+\displaystyle \cdots+z^{n}=\frac{1-z^{n+1}}{1-z}\)となる.
また,\(\displaystyle \frac{1-z^{n+1}}{1-z}\)\(=\displaystyle \frac{(1-\cos(n+1)\theta)-i\sin(n+1)\theta}{(1-\cos\theta)-i\sin\theta}\)となる.
ここで,次の式を利用する.
\(1-\cos\theta\)\(=\displaystyle 2\sin^{2}\frac{\theta}{2}\)
\(\sin\theta\)\(=\displaystyle 2\cos\frac{\theta}{2}\sin\frac{\theta}{2}\)
\(1-\cos(n+1)\theta\)\(=\displaystyle 2\sin^{2}\frac{(n+1)\theta}{2}\)
\(\sin(n+1)\theta\)\(=\displaystyle 2\cos\frac{(n+1)\theta}{2}\sin\frac{(n+1)\theta}{2}\)
よって,
\(\displaystyle \frac{1-z^{n+1}}{1-z}\)\(=\displaystyle \frac{\sin\frac{(n+1)\theta}{2}(\sin\frac{(n+1)\theta}{2}-i\cos\frac{(n+1)\theta}{2})}{\sin\frac{\theta}{2}(\sin\frac{\theta}{2}-i\cos\frac{\theta}{2})}\)\(=\displaystyle \frac{\sin\frac{(n+1)\theta}{2}(\cos\frac{(n+1)\theta}{2}+i\sin\frac{(n+1)\theta}{2})}{\sin\frac{\theta}{2}(\cos\frac{\theta}{2}+i\sin\frac{\theta}{2})}\)\(=\displaystyle \frac{\sin\frac{(n+1)\theta}{2}}{\sin\frac{\theta}{2}}\left(\cos\frac{n\theta}{2}+i\sin\frac{n\theta}{2}\right)\)
以上より実数部分と虚数部分で比較すると\(\displaystyle 1+ \cos\theta+\cdots+\cos n\theta\)\(=\displaystyle \frac{\cos\frac{n\theta}{2}\sin\frac{(n+1)\theta}{2}}{\sin\frac{\theta}{2}}\)
\(\displaystyle \sin\theta+\cdots+\sin n\theta\)\(=\displaystyle \frac{\sin\frac{n\theta}{2}\sin\frac{(n+1)\theta}{2}}{\sin\frac{\theta}{2}}\)となる.
③
\(I=\displaystyle \int_{0}^{\frac{\pi}{2}}\log(\sin x)dx\)と置く.
ここで,\(\displaystyle x=\frac{\pi}{2}-t\)と置くと,
\(I=\displaystyle \int_{\frac{\pi}{2}}^{0}\log\left(\sin \left(\frac{\pi}{2}-t\right)\right)(-dt)\)\(=\displaystyle \int_{0}^{\frac{\pi}{2}}\log(\cos t)dt\)\(=\displaystyle \int_{0}^{\frac{\pi}{2}}\log(\cos x)dx\)
また,\(x=\pi-t\)と置くと,
\(I=\displaystyle \int_{\pi}^{\frac{\pi}{2}}\log(\sin (\pi-t))(-dt)\)\(=\displaystyle \int_{\frac{\pi}{2}}^{\pi}\log(\sin t)dt\)\(=\displaystyle \int_{\frac{\pi}{2}}^{\pi}\log(\sin x)dx\)(\(x\),\(t\)は積分変数なので,どの文字としても問題ない.)
よって,\(2I=\displaystyle \int_{0}^{\pi}\log(\sin x)dx\)である.
ここで,\(x=2t\)と置くと,
\(2I=\displaystyle \int_{0}^{\frac{\pi}{2}}\log(\sin 2t)2dt\)\(=\displaystyle 2\int_{0}^{\frac{\pi}{2}}\log 2 dt\)\(+\displaystyle 2\int_{0}^{\frac{\pi}{2}}\log(\sin t)dt\)\(+\displaystyle 2\int_{0}^{\frac{\pi}{2}}\log(\cos t)dt\)\(=\pi\log 2+2I+2I\)
これより,\(\displaystyle I=-\frac{\pi}{2}\log 2\)
④
\(\displaystyle \frac{1+\cos\theta+\cdots+\cos n\theta}{\sin\theta+\cdots+\sin n\theta}\)\(=\displaystyle \frac{\cos\frac{n\theta}{2}}{\sin\frac{n\theta}{2}}\)
よって,\(\displaystyle \int_{\frac{k\pi}{n^2}}^{\frac{2k\pi}{n^2}}\frac{1+\cos\theta+\cdots+\cos n\theta}{\sin\theta+\cdots+\sin n\theta}d\theta\)\(=\displaystyle \int_{\frac{k\pi}{n^2}}^{\frac{2k\pi}{n^2}}\frac{2}{n}\frac{(\sin\frac{n\theta}{2})^{\prime}}{\sin\frac{n\theta}{2}}d\theta\)\(=\displaystyle \frac{2}{n}\left[\log\left|\sin\frac{n\theta}{2}\right|\right]_{\frac{k\pi}{n^2}}^{\frac{2k\pi}{n^2}}\)\(=\displaystyle \frac{2}{n}\left(\log\sin\frac{k\pi}{n}-\log\sin\frac{k\pi}{2n}\right)\)
よって,\(\displaystyle \lim_{n\rightarrow\infty}\sum_{k=1}^{n}\int_{\frac{k\pi}{n^2}}^{\frac{2k\pi}{n^2}}\frac{1+\cos\theta+\cdots+\cos n\theta}{\sin\theta+\cdots+\sin n\theta}d\theta\)\(=\displaystyle \lim_{n\rightarrow\infty}\frac{2}{n}\sum_{k=1}^{n}\left(\log\sin\frac{k\pi}{n}-\log\sin\frac{k\pi}{2n}\right)\)\(=\displaystyle 2\int_{0}^{1}\log{\sin{\pi x}}dx\)\(-\displaystyle 2\int_{0}^{1}\log{\sin{\frac{\pi}{2} x}}dx\)
ここで③を利用し,
\(\displaystyle \int_{0}^{\pi}\log(\sin x)dx\)\(=-\pi\log 2\)で\(x=\pi t\)とすれば,
\(\displaystyle \int_{0}^{1}\log(\sin{\pi t})\pi dt\)\(=-\pi\log 2\) \(\Leftrightarrow\) \(\displaystyle \int_{0}^{1}\log(\sin \pi x)dx\)\(=-\log 2\)
また,\(\displaystyle \int_{0}^{\frac{\pi}{2}}\log(\sin x)dx\)\(=\displaystyle -\frac{\pi}{2}\log 2\)で\(\displaystyle x=\frac{\pi}{2} t\)とすれば,
\(\displaystyle \int_{0}^{1}\log\left(\sin{\frac{\pi}{2} t}\right)\frac{\pi}{2} dt\)\(=-\displaystyle \frac{\pi}{2}\log 2\) \(\Leftrightarrow\) \(\displaystyle \int_{0}^{1}\log\left(\sin{\frac{\pi}{2} x}\right)dx\)\(=-\log 2\)
よって,\(\displaystyle \lim_{n\rightarrow\infty}\sum_{k=1}^{n}\int_{\frac{k\pi}{n^2}}^{\frac{2k\pi}{n^2}}\frac{1+\cos\theta+\cdots+\cos n\theta}{\sin\theta+\cdots+\sin n\theta}d\theta=0\)