MATH

上級者

数学Ⅲ:積分法


ヒント:\(\displaystyle \int \frac{1}{1+x^2}dx\)の形にするために,2乗の形に変換するのと1を作る必要がある.

問題
\(\displaystyle \lim_{N\rightarrow \infty}\int_{0}^{N} \frac{1}{1+x^2}dx=\frac{\pi}{2}\)を用いて,次の積分値を求めよ.
(A)\(\displaystyle I=\lim_{n\rightarrow \frac{\pi}{4}-0}\int_{0}^{n} \frac{1}{\sin^4 x+\cos^4 x}dx\)
(B)\(\displaystyle I=\lim_{n\rightarrow \frac{\pi}{4}-0}\int_{0}^{n} \frac{1}{\sin^6 x+\cos^6 x}dx\)

解答
(A)
\(\sin^4 x+\cos^4 x\)\(=(\cos^2 x-\sin^2 x)^2+2\sin^2 x\cos^2 x\)\(=\displaystyle \cos^2 2x+\frac{\sin^2 2x}{2}\)\(=\displaystyle \cos^2 2x\left(1+\frac{\tan^2 2x}{2}\right)\)
よって,\(I\)\(=\displaystyle \lim_{n\rightarrow \frac{\pi}{4}-0}\int_{0}^{n} \frac{\frac{1}{\cos^2 2x}}{1+\frac{\tan^2 2x}{2}}dx\)
ここで,\(\displaystyle \frac{\tan 2x}{\sqrt{2}}=t\)と置くと,\(\displaystyle dt=\frac{\sqrt{2}}{\cos^2 2x}dx\),\(\displaystyle x:0\rightarrow n\)で\(\displaystyle t:0\rightarrow N\)
なお,\(\displaystyle N=\lim_{n\rightarrow \frac{\pi}{4}-0} \frac{\tan 2n}{\sqrt{2}}=\infty\)
よって,\(I\)\(=\displaystyle \lim_{N\rightarrow \infty}\frac{1}{\sqrt{2}}\int_{0}^{N}\frac{1}{1+t^2}dt\)\(=\displaystyle \frac{\pi}{2\sqrt{2}}\)


(B)
\(\sin^6 x+\cos^6 x\)\(=(\sin^2 x+\cos^2 x)^3-3\sin^2 x\cos^2 x(\sin^2 x+\cos^2 x)\)\(=1-3\sin^2 x\cos^2 x\)\(=\displaystyle (\sin^2 2x+\cos^2 2x)-\frac{3\sin^2 2x}{4}\)\(=\displaystyle \cos^2 2x+\frac{\sin^2 2x}{4}\)\(=\displaystyle \cos^2 2x\left(1+\frac{\tan^2 2x}{4}\right)\)
よって,\(I\)\(=\displaystyle \lim_{n\rightarrow \frac{\pi}{4}-0} \int_{0}^{n} \frac{\frac{1}{\cos^2 2x}}{1+\frac{\tan^2 2x}{4}}dx\)
ここで,\(\displaystyle \frac{\tan 2x}{2}=t\)と置くと,\(\displaystyle dt=\frac{1}{\cos^2 2x}dx\),\(\displaystyle x:0\rightarrow n\)で\(\displaystyle t:0\rightarrow N\)
ここで,\(\displaystyle N=\lim_{n\rightarrow \frac{\pi}{4}-0} \frac{\tan 2n}{2}=\infty\)
よって,\(I\)\(=\displaystyle \lim_{N\rightarrow \infty} \int_{0}^{N} \frac{1}{1+t^2}dt\)\(=\displaystyle \frac{\pi}{2}\)