上級者
数学Ⅲ:積分法
-
ヒント:この問題はノーヒントだとおそらく解くことは厳しい.解き方を覚えておきましょう.
問題
定積分\(I=\displaystyle \int_{0}^{\pi}\frac{x\sin^{2}x}{\sin^{6}x+\cos^{6}x}dx\)の値を求めよ.なお,\(\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{1}{\sin^{6}x+\cos^{6}x}dx\)\(=\pi\)であることを使ってもよい.(オリジナル)
解説
ここでは以下の3つの方法を覚えておこう.
(A) まずは,\(\displaystyle \int_{0}^{\pi}xf(\sin x)dx\)\(=\displaystyle \frac{\pi}{2} \int_{0}^{\pi}f(\sin x)dx\)が成り立つことを示す.
\(x=\pi-t\)と置くと,\(\sin x=\sin (\pi-t)=\sin t\),
\(x:0\rightarrow \pi\)で\(t:\pi\rightarrow 0\),\(dx=-dt\)
よって,\(\displaystyle \int_{0}^{\pi}xf(\sin x)dx\)\(=\displaystyle \int_{\pi}^{0}(\pi-t)f(\sin t)(-dt)\)\(=\displaystyle \int_{0}^{\pi}\pi f(\sin t)dt - \int_{0}^{\pi}tf(\sin t)dt\)
ここで,\(t\)や\(x\)は単なる積分変数なので変更可能.
よって,\(\displaystyle \int_{0}^{\pi}xf(\sin x)dx\)\(=\displaystyle \int_{0}^{\pi}\pi f(\sin x)dx - \int_{0}^{\pi}xf(\sin x)dx\) \(\Leftrightarrow\) \(\displaystyle \int_{0}^{\pi}xf(\sin x)dx\)\(=\displaystyle \frac{\pi}{2}\int_{0}^{\pi} f(\sin x)dx\)
(B)次に,\(\displaystyle \int_{0}^{\pi}\frac{\sin^{2}x}{\sin^{6}x+\cos^{6}x}dx\)\(=2\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{\sin^{2}x}{\sin^{6}x+\cos^{6}x}dx\)が成り立つことを示す.(\(x=\frac{\pi}{2}\)で左右対称となる.)
\(J=\displaystyle \int_{\frac{\pi}{2}}^{\pi}\frac{\sin^{2}x}{\sin^{6}x+\cos^{6}x}dx\)に関して,\(x=\pi-t\)と置くと,
\(\sin x=\sin (\pi-t)=\sin t\),\(\cos x=\cos (\pi-t)=-\cos t\)
\(\displaystyle x:\frac{\pi}{2}\rightarrow \pi\)で\(\displaystyle t:\frac{\pi}{2}\rightarrow 0\),\(dx=-dt\)
よって,\(J=\displaystyle \int_{\frac{\pi}{2}}^{0}\frac{\sin^{2}t}{\sin^{6}t+\cos^{6}t}(-dt)\)\(=\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{\sin^{2}x}{\sin^{6}x+\cos^{6}x}dx\) (\(t\)や\(x\)は単なる積分変数なので変更可能)
よって,\(\displaystyle \int_{0}^{\pi}\frac{\sin^{2}x}{\sin^{6}x+\cos^{6}x}dx\)\(=2\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{\sin^{2}x}{\sin^{6}x+\cos^{6}x}dx\)が成り立つ.
(C)次に,\(\displaystyle \int_{0}^{\frac{\pi}{2}}f(\sin x)dx\)\(=\displaystyle \int_{0}^{\frac{\pi}{2}}f(\cos x)dx\)が成り立つことを示す.
\(\displaystyle x=\frac{\pi}{2}-t\)と置くと,\(\sin x\)\(=\displaystyle \sin \left(\frac{\pi}{2}-t\right)\)\(=\cos t\),また\(\cos x\)\(=\displaystyle \sin \left(\frac{\pi}{2}-t\right)\)\(=\sin t\)
\(\displaystyle x:0\rightarrow \frac{\pi}{2}\)で\(\displaystyle t:\frac{\pi}{2}\rightarrow 0\),\(dx=-dt\)
よって,\(\displaystyle \int_{0}^{\frac{\pi}{2}}f(\sin x)dx\)\(=\displaystyle \int_{\frac{\pi}{2}}^{0}f(\cos t)(-dt)\)\(=\displaystyle \int_{0}^{\frac{\pi}{2}}f(\cos x)dx\)が成り立つ.(\(t\)や\(x\)は単なる積分変数なので変更可能)
以上の性質を利用すると,\(I=\displaystyle \int_{0}^{\pi}\frac{x\sin^{2}x}{\sin^{6}x+\cos^{6}x}dx\)\(=\displaystyle \frac{\pi}{2}\int_{0}^{\pi}\frac{\sin^{2}x}{\sin^{6}x+\cos^{6}x}dx\)\(=\pi\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{\sin^{2}x}{\sin^{6}x+\cos^{6}x}dx\)\(=\pi\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{\cos^{2}x}{\sin^{6}x+\cos^{6}x}dx\)
よって,\(2I=\pi\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{\sin^{2}x}{\sin^{6}x+\cos^{6}x}dx\)\(+\pi\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{\cos^{2}x}{\sin^{6}x+\cos^{6}x}dx\)\(=\pi\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{1}{\sin^{6}x+\cos^{6}x}dx\)
ここで,\(\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{1}{\sin^{6}x+\cos^{6}x}dx\)\(=\pi\)を代入して整理すれば,\(\displaystyle I=\frac{\pi^2}{2}\)となる.
(1) \(f(x)\)を連続関数とするとき,\(\displaystyle \int_{0}^{\pi}xf(\sin x)dx\)\(=\displaystyle \frac{\pi}{2}\int_{0}^{\pi}f(\sin x)dx\)が成り立つことを示せ.
(2) 定積分\(\displaystyle \int_{0}^{\pi}\frac{x\sin^{3}x}{\sin^{2}x +8}dx\)の値を求めよ.(2010 横浜国立大)
(1)については,上記の(A)に記載.
(2)の答えは,\(\displaystyle \left(1-\frac{4\log 2}{3}\right)\pi\)